Electrochemical Regulation of Budding Yeast Polarity

نویسندگان

  • Armin Haupt
  • Alexis Campetelli
  • Daria Bonazzi
  • Matthieu Piel
  • Fred Chang
  • Nicolas Minc
چکیده

Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central roles of small GTPases in the development of cell polarity in yeast and beyond.

SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attracti...

متن کامل

Sequential and distinct roles of the cadherin domain-containing protein Axl2p in cell polarization in yeast cell cycle.

Polarization of cell growth along a defined axis is essential for the generation of cell and tissue polarity. In the budding yeast Saccharomyces cerevisiae, Axl2p plays an essential role in polarity-axis determination, or more specifically, axial budding in MATa or alpha cells. Axl2p is a type I membrane glycoprotein containing four cadherin-like motifs in its extracellular domain. However, it ...

متن کامل

Initial Polarized Bud Growth by Endocytic Recycling in the Absence of Actin Cable–dependent Vesicle Transport in Yeast

The assembly of filamentous actin is essential for polarized bud growth in budding yeast. Actin cables, which are assembled by the formins Bni1p and Bnr1p, are thought to be the only actin structures that are essential for budding. However, we found that formin or tropomyosin mutants, which lack actin cables, are still able to form a small bud. Additional mutations in components for cortical ac...

متن کامل

Symmetry breaking in the life cycle of the budding yeast.

The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues. A large body of experimental observations has shown that yeast cells are able to break symmetry and establish polarity through two coupled and partially redundant intrinsic mechanisms, even in the ...

متن کامل

Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014